Materials for extreme environments research at the George H.W. Bush Combat Development Complex aims to address several critical challenges in the manufacturing, design and evaluation of high-performance materials for hypersonic vehicles and structures subjected to severe aero-thermal environments.
The primary objectives of this project are to:
- Develop and evaluate leading-edge and outer mold line materials to better resist dynamic material degradation processes.
- Develop advanced manufacturing concepts for carbon-carbon composites to enhance interlaminar properties, improve structural and thermal efficiency and promote robust seams.
Principal Investigators
Dr. Thomas E. Lacy Jr.
Professor, Mechanical Engineering
TELacyJr@tamu.edu
Dr. Jonathan Felts
Associate Professor, Mechanical Engineering
jonathan.felts@tamu.edu
Dr. Jaime Grunlan
Leland T. Jordan ’29 Chair Professor, Mechanical Engineering
jgrunlan@tamu.edu
Dr. Waruna Kulatilaka
Associate Professor, Mechanical Engineering
waruna.kulatilaka@tamu.edu
Dr. Mohammad Naraghi
Associate Professor, Mechanical Engineering
naraghi@tamu.edu
Dr. Miladin Radovic
Professor, Materials Science and Engineering
mradovic@tamu.edu
Dr. Patrick Shamberger
Assistant Professor, Materials Science and Engineering
patrick.shamberger@tamu.edu
Dr. Justin Wilkerson
Assistant Professor and James J. Cain Faculty Fellow, Mechanical Engineering
wilkerson@tamu.edu
News
Accelerating materials for extreme environments research
Researchers are exploring which materials can best mitigate the damage from hypervelocity blasts. The scorching heat caused by speeds exceeding Mach 5 radically alters how different materials tolerate collision.
Featured Publications
- Li, Y.-C.; Mannen, S.; Morgan, A. B.; Chang, S.; Yang, Y.-H.; Condon, B.; Grunlan, J. C. “Intumescent all-polymer multilayer nanocoating capable of extinguishing flame on fabric,” Advanced Materials 2011, 23, 3926. F-3
- Guin, T.; Krecker, M.; Milhorn, A.; Grunlan, J. C. “Maintaining hand and improving fire resistance of cotton fabric through ultrasonication rinsing of multilayer nanocoating,” Cellulose 2014, 21, 3023.
- Leistner, M.; Abu-Odeh, A. A.; Rohmer, S. C.; Grunlan, J. C. “Water-based chitosan / melamine polyphosphate multilayer nanocoating that extinguishes fire on polyester-cotton fabric,” Carbohydrate Polymers 2015, 115, 227.
- Cain, A. A.; Plummer, M.; Murray, S.; Bolling, L.; Regev, O.; Grunlan, J. C. “Ironcontaining, high aspect ratio clay as nanoarmor that imparts substantial thermal/flame protection to polyurethane with a single electrostatically-deposited bilayer,” Journal of Materials Chemistry A 2014, 2, 17609.
- Guin, T.; Krecker, M.; Milhorn, A.; Hagen, D. A.; Grunlan, J. C. “Exceptional flame resistance and gas barrier with thick multilayer nanobrick wall thin films,” Advanced Materials Interfaces 2015, 2, 1500214.
- Guo, G.; Park, C. B.; Lee, Y. H.; Kim, Y. S.; Sain, M. “Flame retarding effects of nanoclay on wood-fiber composites,” Polym. Eng. Sci. 2007, 47, 330.
- Gilman, J. W.; Harris, R. H.; Shields, J. R.; Kashiwagi, T.; Morgan, A. B. “A study of the flammability reduction mechanism of polystyrene-layered silicate nanocomposite: Layered silicate reinforced carbonaceous char,” Polym. Adv. Technol. 2006, 17, 263.
- Zhu, J.; Start, P.; Mauritz, K. A.; Wilkie, C. A. “Thermal stability and flame retardancy of poly(methyl methacrylate)-clay nanocomposites,” Polym. Degrad. Stab. 2002, 77, 253.
- Peeterbroeck, S.; Laoutid, F.; Swoboda, B.; Lopez-Cuesta, J. M.; Moreau, N.; Nagy, J. B.; Alexandre, M.; Dubois, P. “How carbon nanotube crushing can improve flame retardant behaviour in polymer nanocomposites,” Macromol. Rapid Commun. 2007, 28, 260.
- Schartel, B.; Potschke, P.; Knoll, U.; Abdel-Goad, M. “Fire behaviour of polyamide6/multiwall carbon nanotube nanocomposites,” Eur. Polym. J. 2005, 41, 1061.